Bonding Behavior of Repair Material Using Fly-Ash/Ground Granulated Blast Furnace Slag-Based Geopolymer

Author:

Kuo Wen-TenORCID,Liu Ming-Yao,Juang Chuen-Ul

Abstract

Fly ash/ground-granulated blast-furnace slag geopolymer (FGG) contains reaction products with a high volume of Ca, hydrated CaSiO3, and hydrated AlCaSiO3. These compounds enable the filling of large air voids in a structure, thus increasing compactness. Therefore, FGG is a more effective repair material to stabilize structures and can function as a sealing and insulating layer. This study used FGG as the repair material for concrete with ground-granulated blast-furnace slag (GGBFS) as the main cement material. The bond strength of the repair was discussed from different aspects, including for fly-ash substitution rates of 0%, 10%, 20%, and 30% and for liquid–solid ratios of 0.4 and 0.5. The slant shear test, and the split tensile test were employed in this analysis. Moreover, acoustic emission (AE) and scanning electron microscopy were used to confirm the damage modes and microstructural characteristics of these repairs. The results revealed that when the liquid–solid ratio increased from 0.4 to 0.5, the slant shear strength of the repaired material decreased from 36.9 MPa to 33.8 MPa, and the split tensile strength decreased from 1.97 MPa to 1.87 MPa. The slant shear test and split tensile test demonstrated that the repair material exhibited the highest effectiveness when the fly-ash substitution was 10%, and revealed that the repair angle directly affected the damage modes. The AE technique revealed that the damage behavior pattern of the FGG repair material was similar to that of Portland concrete. The microstructural analysis revealed that the FGG–concrete interphase contained mostly hydration products, and based on energy-dispersive X-ray spectroscopy (EDX), the compactness in the interphase and bond strength increased after the polymerization between the geopolymer and concrete. This indicated that the geopolymer damage mode was highly related to the level of polymerization.

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

1. The Durability Study of Structural Repairing Materials after Earthquake Damage. Proceedings of Research Results in the Development of Seismic Materials for Civil Structures;Chen,2002

2. Transition zone studies of new-to-old concrete with different binders

3. Concrete: Microstructure, Properties, and Materials;Mehta,2006

4. A new way to increase the long-term bond strength of new-to-old concrete by the use of fly ash;Li;Cem. Concr. Res.,2003

5. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3