Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy

Author:

Cui Ning,Wu Qianqian,Bi Kexiao,Xu Tiewei,Kong Fantao

Abstract

The effect of heat treatment on the microstructures and mechanical properties of a novel β-solidifying Ti–43Al–2Cr–2Mn–0.2Y alloy was investigated. A fully lamellar (FL) microstructure with a colony size of about 100 μm was obtained by heat treatment at 1320 °C/10 min/furnace cooling (FC). A duplex (DP) microstructure with globular γ grains and γ/α2 lamellae was obtained by heat treatment at 1250 °C/4 h/FC. The residual hard–brittle β0 phase was also eliminated after heat treatment. The mechanical properties of the β-solidifying TiAl alloy depended closely on the heat treatment. The FL alloy had better fracture toughness, and the fracture toughness (KIC) value was 24.15 MPa·m1/2. The DP alloy exhibited better ductility, and the room temperature (RT) elongation of the alloy could reach 1%. The elongation of the alloy with different microstructures sharply increased when the temperature increased from 700 to 750 °C, indicating that the microstructure had no effect on the ductile–brittle transition temperature of the β-solidifying TiAl alloy. The fracture morphologies of different tensile specimens were observed. Interlamellar and translamellar fractures were the main fracture features of the FL alloy. Intergranular, translamellar, and interlamellar fractures were the main fracture features of the DP alloy.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3