Infrared Thermal Image-Based Sustainable Fault Detection for Electrical Facilities

Author:

Kim Ju Sik,Choi Kyu Nam,Kang Sung WooORCID

Abstract

Faults in electrical facilities may cause severe damages, such as the electrocution of maintenance personnel, which could be fatal, or a power outage. To detect electrical faults safely, electricians disconnect the power or use heavy equipment during the procedure, thereby interrupting the power supply and wasting time and money. Therefore, detecting faults with remote approaches has become important in the sustainable maintenance of electrical facilities. With technological advances, methodologies for machine diagnostics have evolved from manual procedures to vibration-based signal analysis. Although vibration-based prognostics have shown fine results, various limitations remain, such as the necessity of direct contact, inability to detect heat deterioration, contamination with noise signals, and high computation costs. For sustainable and reliable operation, an infrared thermal (IRT) image detection method is proposed in this work. The IRT image technique is used in various engineering fields for diagnosis because of its non-contact, safe, and highly reliable heat detection technology. To explore the possibility of using the IRT image-based fault detection approach, object detection algorithms (Faster R-CNN; Faster Region-based Convolutional Neural Network, YOLOv3; You Only Look Once version 3) are trained using 16,843 IRT images from power distribution facilities. A thermal camera expert from Korea Hydro & Nuclear Power Corporation (KHNP) takes pictures of the facilities regarding various conditions, such as the background of the image, surface status of the objects, and weather conditions. The detected objects are diagnosed through a thermal intensity area analysis (TIAA). The faster R-CNN approach shows better accuracy, with a 63.9% mean average precision (mAP) compared with a 49.4% mAP for YOLOv3. Hence, in this study, the Faster R-CNN model is selected for remote fault detection in electrical facilities.

Funder

Inha University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference36 articles.

1. Statistics of Electric Power in KOREA,2018

2. The Assessment of the Risk Index of Live-line Works on Distribution Line by the Accident Analysis;Choi;J. Korean Soci. Saf.,2011

3. Development of an Intelligent System for Diagnosing the Technical Condition of the Heat Power Equipment

4. Research on Thermal Fault Detection Technology of Power Equipment based on Infrared Image Analysis

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3