Investigations into NOx Formation Characteristics during Pulverized Coal Combustion Catalyzed by Iron Ore in the Sintering Process

Author:

Wan Junying,Chen Tiejun,Zhou XianlinORCID,Liu Jiawen,Shi BenjingORCID,Wang Zhaocai,Li Lanlan

Abstract

Sintering accounts for about 50% of the total NOx emissions of the iron and steel industry. NOx emissions from the sintering process can be simulated using the emissions from coke combustion. However, the generation and emission law for NOx burning in the sintering process of pulverized coal is still not clear. The formation characteristics of NOx during coal combustion catalyzed by iron ore fines and several iron-containing pure minerals were studied in this paper. The results showed that iron ore fines can improve the NOx emission rate and increase the total NOx emissions during coal combustion. The type and composition of the iron ore fines have an important impact on the generation and emission of NOx in the process of coal combustion. The peak concentration and emissions of NOx in coal combustion flue gas with limonite, hematite or specularite added increased significantly. The peak value for the NOx concentration in the coal combustion flue gas with magnetite or siderite added increased, but the emissions decreased. Therefore, the generation of NOx in the sintering process can to a certain extent be controlled by adjusting the type of iron-containing raw materials and the distribution of the iron-containing raw materials and coal.

Funder

the Basic Research Fund of Zhongye Changtian International Engineering Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3