Author:
Wang Hai,Gao Wenwei,Zhang Xiyue,Li Yi,Zhang Shuyuan,Ren Ling,Yang Ke
Abstract
Titanium alloys are widely used in the biomedical field. To ensure their strength meets requirements in clinics, medical titanium alloys are generally alloyed with toxic Al and/or V elements, hence ensuring their long-term biological safety after implantation is a challenge. In our previous research, we developed an ultrafine-grained Ti15Zr5Cu alloy without toxic elements while its mechanical properties were at the same level with the most widely used Ti6Al4V alloy. In order to promote the clinical application of the ultrafine-grained Ti15Zr5Cu alloy, herein we have systematically studied the hot deformation behaviors of the material as well as evaluated its corrosion resistance and biological properties. Results showed that when the as-quenched Ti15Zr5Cu alloy deformed at 0.05 ≤ ε˙ ≤ 1, 730 °C ≤ T ≤ 750 °C, it not only possessed good workability but also can be converted into an equiaxed ultrafine-grained microstructure. Moreover, the material also exhibited better corrosion resistance, antibacterial properties and biocompatibility than the Ti15Zr alloy and the commercial pure Ti. The results of the present study help lay a foundation for the development of a new generation of medical titanium alloys.
Funder
National Key Research and Development Program of China
Bintech-IMR R&D Program
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献