Effect of Cold Deformation on Microstructure and Mechanical Behavior of Commercially Pure Grade 4 Titanium Strip

Author:

Zhu Baohui,Wu Xiangdong,Wan Min,Cui Xuexi,Li Heng,Li Xiaofei,Shen Lihua

Abstract

The microstructure and mechanical behavior of commercially pure grade 4 (Gr.4) titanium strips with different deformations were studied by optical microscope (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), uniaxial tensile test, and hardness test. The work-hardening characteristics of a Gr.4 strip were analyzed with a true-stress–strain curve. The results show that cold deformation can significantly improve the strength and hardness of a commercially pure titanium Gr.4 strip, which has significant work hardening characteristics. With the increase in deformation amount, the grain is stretched into a fibrous shape along the longitudinal direction, while the strength and hardness increase and the plasticity decreases. Moreover, there is a significant linear relationship between the tensile strength and hardness. The true-stress–true-strain curves of a Gr.4 strip in different states were analyzed by combining three hardening models. It was found that the true-stress–true-strain curve of an annealed Gr.4 strip can be regressed by the Ludwigson, Voce, and Swift models, the Ludwigson model has a higher fitting accuracy, and the fitting results of the tensile true-stress–true-strain curves of Gr.4 strips after cold deformation hardening are not ideal. The cold deformation mechanism of a Gr.4 strip is mainly based on slippage, with an increase in dislocation density and dislocation tanglement leading to work-hardening behavior during cold deformation.

Funder

State Key Laboratory of Special Rare Metal Materials in Northwest Rare Metal Materials Research Institute Ningxia Co., Ltd.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3