Acoustic Analysis of Slag Foaming in the BOF

Author:

Heenatimulla Jason,Brooks Geoffrey A.ORCID,Dunn MichelleORCID,Sly DavidORCID,Snashall Rod,Leung Wang

Abstract

The control of slag foam that is produced during the Basic Oxygen Furnace (BOF) process has been the subject of significant research. The behaviour of slag foams is complex. Hence, the control of slag foam in the dynamic process of the BOF is challenging. Acoustic analysis of the BOF is one of the most promising methods for the indirect measurement of slag foam height. This paper reviews different studies on the fundamental behaviour of acoustics in liquid foams and various acoustic studies related to determining the slag foam height during the BOF process. Studies on the BOF have been carried out using both cold water models and plant trials, where acoustic measurements taken directly from the process were analysed. These studies showed that the attenuation of sound through liquid foam was influenced mainly by factors such as viscosity, bubble size, and foam height. Current systems are said to be 70 to 87 per cent accurate in detecting and/or predicting slopping events in the BOF, though there is a lack of systematic data in the literature to fully quantify this accuracy. There have been various attempts to combine sound with vibration and image signals to improve the prediction of slopping events in BOFs. The review substantiates the lack of accuracy of the current systems in determining the slag foam height using acoustic analysis and the need to address fundamental questions about the behaviour of sound in dynamic foam, its reliance on different factors, and the relatability of comparing cold model data to industrial data.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3