Joining of Macroscopic 3D Steel Transition Wire Structures to Steel Sheets: Study on the Mechanical, Microstructural, and Phase Characteristics of Brazed and Glued Joints

Author:

Palaniyappan SaravananORCID,Todt Andreas,Trautmann MaikORCID,Röder Felix,Binotsch Carolin,Awiszus Birgit,Wagner GuntramORCID

Abstract

With an increased demand for the combination of different material classes in lightweight applications like automobiles, aircraft construction, etc., the need for simple and energy-efficient joining technologies to join these different material classes has been extensively researched over the last decades. One such hybrid material combination is the metal–plastic hybrid structure, which offers the combinational characteristics of high strength and stiffness of the metal part along with characteristic elasticity and low density of the plastic part. In this research work, the focus is laid on generating a graded property transition at the interface of metal–plastic joints by brazing a three-dimensional (3D) macroscopic transition wire structure (TWS) strucwire®, over the metal part before being molded with plastic at a later stage using an injection over-molding process. This helps in providing a mechanical interlocking facility and thereby achieving a higher load transfer at the interface of metal–plastic hybrid joints. The graded steel wire structures with different carbon content were brazed onto the galvanized steel sheets using the hotplate brazing technique. In addition to the Zinc layer on the galvanized steel sheets, electroplated Zinc coatings were fabricated on the wire structures to provide better brazing quality. The microstructural, mechanical, and intermetallic phase characteristics of the resulting brazed joints were evaluated using light microscopy, adhesion tests, and scanning electron microscopy, respectively.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3