High-Order Groove-Shape Curve Roll Design for Aluminum Alloy 7075 Wire Rolling

Author:

Sheu Jinn-Jong,Ho Chien-Jen,Yu Cheng-HsienORCID,Kao Chi-Yuan

Abstract

A Bézier curve groove-shape roll design method was proposed and compared to round-oval-round designs for the wire rolling process. CAE simulations were adopted to predict the rolling forces and torques required for the rolling process. The rolling torque required for the case of 28% vertical compression rate is 73% higher than the case of 12% compression rate. The curve fittings of the rolling torque and the compression force with respect to the compression rate were obtained with very high R-square values (0.99 and 0.98) in the first rolling pass. The rolling force required for the Bézier curve groove-shape design is no different compared to the oval design with the same compression rate, but the rolling torque requirement for the next rolling station is 6% less than the oval groove design. Furthermore, the equivalent strain distribution on the cross section of the product was uniform, and no fin flash defects occurred. The proposed Bézier curve groove-shape is a better design from the viewpoint of uniform product mechanical property requirement, and a larger compression rate per pass could be achieved.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3