Experimental and Numerical Analysis of Prestrain on the Formability of Zn-Cu-Ti Alloy Zinc Sheet

Author:

Nicoletti Emanuel,Roatta Analía,Ponzellini Marinelli Luciano,Signorelli Javier,Celentano DiegoORCID

Abstract

The forming limit diagrams (FLDs) characterizing the formability of sheet metals are usually obtained by applying proportional loadings. Nevertheless, the industrial processes involve strain path changes that can modify the limit-strain values. In addition, for strongly anisotropic sheet metals such as the Zn-Cu-Ti zinc alloy, large differences in forming limit curves (FLCs) with respect to the sheet rolling direction are observed. In the present work, the analysis of the effect of bilinear strain paths on the FLC is addressed by both experimental measurements and numerical simulations. For this purpose, a miniature testing device was used that allows evaluation of the influence of strain path changes on the limit strain on samples at 0°, 45° and 90° with respect to the sheet rolling direction cut from non-standard large samples previously subjected to a prestrain along the RD up to an early deformation of ~0.12. Numerical simulations were carried out using the well-known Marciniak and Kuczynski (MK) theory in conjunction with the viscoplastic self-consistent (VPSC) crystal plasticity model. In order to account for the grain fragmentation process due to the continuous dynamic recrystallization (CDRX) mechanism, an ad hoc short-range interaction effect (SRE) model was included in the simulations. Additionally, the measured and simulated texture evolution of Zn-Cu-Ti alloy sheets at the different stages of the deformations were shown. The capacity of the MK-VPSC-SRE model was validated, and the limitations to simulating the texture development, flow stress and forming limit curves, including a non-proportional strain path, were discussed.

Funder

National Scientific and Technical Research Council

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3