Effect of Mn Element on the Structures and Properties of A2B7-Type La–Y–Ni-Based Hydrogen Storage Alloys

Author:

Deng Anqiang,Luo Yongchun,Zhou Jianfei,Xie Yunding,Yuan Yuan,Kang Xiaoyan,Shen Bingjin,Zhang Haimin

Abstract

The structures, hydrogen storage behaviors and electrochemical properties of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) alloys were analyzed by X-ray diffraction, Neutron powder diffraction, pressure–composition isotherms and electrochemical tests. All alloys have a multiphase structure. With the increase in Mn content, the Gd2Co7-type phase of the alloys gradually transforms into the Ce2Ni7-type phase; the Mn atom mainly occupies the Ni sites in the [AB5] subunit and the interface between the [AB5] and [A2B4] subunits; the V[A2B4]/V[AB5] continuously decreases from 1.045 (x = 0) to 1.019 (x = 0.3), which reduces the volume mismatch between [A2B4] and [AB5] subunits. The maximum hydrogen absorption of the series alloys increases first and then decreases, and the addition of Mn effectively promotes the hydrogen absorption/desorption performance of the alloys. The maximum discharge capacity of the alloy electrodes is closely related to their hydrogen storage capacity at 0.1 MPa and hydrogen absorption/desorption plateau pressure. The cyclic stability of all the Mn-containing alloy electrodes is improved clearly compared to that of Mn-free alloy electrodes, because the volume mismatch between the [AB5] and [A2B4] subunits of the alloys becomes smaller after the addition of Mn, which can improve the structural stability and reduce the corrosion of alloys during hydrogen absorption/desorption cycles. When the Mn content is between 0.1 and 0.15, the Ce2Ni7-type phase of the alloys has high abundance and the alloy electrodes exhibit excellent overall performance.

Funder

National Natural Science Foundation of China

Ningxia Natural Science Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3