Selective Laser Melting of Free-Assembled Stainless Steel 316L Hinges: Optimization of Volumetric Laser Energy Density and Joint Clearance

Author:

Jiang Cho-PeiORCID,Wibisono Alvian TotoORCID,Wang Shun-Hsien,Pasang Tim,Ramezani MaziarORCID

Abstract

Selective laser melting technology is one of the metal additive manufacturing technologies that can convert metal powder to complex parts without the assembly process. This study aims to optimize the volumetric laser energy density for printing 3D metal objects with hinges geometry. The material is stainless steel 316L powder. The volumetric laser energy densities ranging from 4.1 J/mm3 to 119.1 J/mm3 are applied to fabricate 3D free-assembled hinges with various clearances of 0.38 mm, 0.39 mm, 0.40 mm, and 0.41 mm and investigate the relationship between volumetric laser energy density and clearance. A multibody model, consisting of nine segments with eight hinges, is proposed to be printed with the optimized volumetric laser energy density. The optical microscope and the hardness test are performed to observe the porosity and hardness property of the SLMed object. The result shows that laser energy densities between 105.5 J/mm3 and 119.1 J/mm3 can produce the high densification of SLMed objects with a porosity defect of 0.24% to 0.20% and hardness in the range of 207 HV to 215 HV. The optimization of laser energy densities is in the range of 105.5 J/mm3 to 119.1 J/mm3, which can be used to fabricate the movable hinges with a minimum clearance size of 0.41 mm. The proposed dinosaur object is printed successfully and all joints are rotatable.

Funder

Ministry of Science and Technology (MOST), Taiwan

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3