Thermal Preprocessing of Rapidly Solidified Al 6061 Feedstock for Tunable Cold Spray Additive Manufacturing

Author:

Haddad Baillie,Sousa Bryer C.ORCID,Tsaknopoulos KyleORCID,Champagne Victor K.,Sisson Richard D.,Nardi AaronORCID,Cote Danielle L.ORCID

Abstract

In this work, the influence of thermal pre-processing upon the microstructure and hardness of Al 6061 feedstock powder is considered through the lens of cold spray processing and additive manufacturing. Since solid-state cold spray processes refine and retain microstructural constituents following impact-driven and high-strain rate severe plastic deformation and bonding, thermal pre-processing enables application-driven tuning of the resultant consolidation achieved via microstructural and, therefore, mechanical manipulation of the feedstock prior to use. Microstructural analysis was achieved via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction, energy dispersive spectroscopy, and differential thermal calorimetry. On the other hand, nanoindentation testing and analysis were relied upon to quantify pre-processing effects and microstructural evolution influences on the resultant hardness as a function of time at 540 °C. In the case of the as-atomized powder, β-Mg2Si-, Al-Fe-, and Mg-Si-type phases were observed along polycrystalline grain boundaries. Furthermore, after a 60 min hold time at 540 °C, Al-Fe-Si-Cr-Mn- and Mg-Si-type intermetallic phases were also observed along grain boundaries. Furthermore, the as-atomized hardness at 250 nm of indentation depth was 1.26 GPa and continuously decreased as a function of hold time until reaching 0.88 GPa after 240 min at 540 °C. Finally, contextualization of the observations with tuning cold spray additive manufacturing part performance via powder pre-processing is presented for through-process and application-minded design.

Funder

United States Army Research Laboratory

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference66 articles.

1. Characterization and Control of Powder Properties for Additive Manufacturing

2. The Effects of LENS Process Parameters on the Behaviour of 17-4 PH Stainless Steel;Mathoho;Proceedings of the TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings,2020

3. Classifying Powder Flowability for Cold Spray Additive Manufacturing Using Machine Learning;Valent;Proceedings of the 2nd International Workshop on Big Data Tools, Methods, and Use Cases for Innovative Scientific Discvery, IEEE Bigdata Conference,2020

4. Characteristics of Feedstock Materials;Hussain,2015

5. Standoff distance and bow shock phenomena in the Cold Spray process

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3