Critical Conditions for Dynamic Recrystallization of S280 Ultra-High-Strength Stainless Steel Based on Work Hardening Rate

Author:

Liu Mutong,Tian Ye,Wang Yu,Wang Kelu,Zhang Kaiming,Lu Shiqiang

Abstract

Isothermal and constant-strain-rate compression experiments for S280 ultra-high-strength stainless steel were carried out under deformation temperatures of 1000–1150 °C and strain rates of 0.001–10 s−1 with a Thermecmaster-Z thermal simulator. The flow–stress behavior of the alloy was studied and the hot deformation activation energy was calculated. A critical strain model of the dynamic recrystallization (DRX) of the alloy was established using the work hardening rate for the first time. The results show that S280 ultra-high-strength stainless steel was positively sensitive to the strain rate and negatively sensitive to temperature, and its flow–stress curve showed characteristics of flow softening. The hot deformation activation energy corresponding to the peak strain was 519.064 kJ/mol. The DRX critical strain of the steel was determined from the minimum value of the −∂(lnθ)/∂ε − ε curve. The relationship between the DRX critical strain and peak strain could be characterized as εc=0.599εp and the relationship between the DRX critical stress and peak stress could be characterized as σc= 0.959σp The critical strain model of DRX could be expressed as εc=0.010Z0.062. The research results can provide theoretical support for avoiding the generation of actual thermal processing microstructure defects such as coarse grains and for obtaining products with excellent microstructure and properties.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference33 articles.

1. A new type of structural material S280;Zhong;Sci. Technol. Rev.,2015

2. Research and application progress in ultra—High strength stainless steel;Liu;Acta Metall. Sin.,2020

3. Research status and application of ultra—High strength steel at home and abroad;Niu;J. Ord. Eq. Eng.,2021

4. New phase precipitated from the new type of ultrahigh strength stainless steel S280;Zhong;Rare Met. Mater. Eng.,2019

5. Effect of Solution and Aging Temperatures on Microstructure and Mechanical Properties of 10Cr13Co13Mo5Ni3W1VE(S280) Steel

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3