Deep Learning Applied to SEM Images for Supporting Marine Coralline Algae Classification

Author:

Piazza GiuliaORCID,Valsecchi CecileORCID,Sottocornola GabrieleORCID

Abstract

The classification of coralline algae commonly relies on the morphology of cells and reproductive structures, along with thallus organization, observed through Scanning Electron Microscopy (SEM). Nevertheless, species identification based on morphology often leads to uncertainty, due to their general plasticity. Evolutionary and environmental studies featured coralline algae for their ecological significance in both recent and past Oceans and need to rely on robust taxonomy. Research efforts towards new putative diagnostic tools have recently been focused on cell wall ultrastructure. In this work, we explored a new classification tool for coralline algae, using fine-tuning pretrained Convolutional Neural Networks (CNNs) on SEM images paired to morphological categories, including cell wall ultrastructure. We considered four common Mediterranean species, classified at genus and at the species level (Lithothamnion corallioides, Mesophyllum philippii, Lithophyllum racemus, Lithophyllum pseudoracemus). Our model produced promising results in terms of image classification accuracy given the constraint of a limited dataset and was tested for the identification of two ambiguous samples referred to as L. cf. racemus. Overall, explanatory image analyses suggest a high diagnostic value of calcification patterns, which significantly contributed to class predictions. Thus, CNNs proved to be a valid support to the morphological approach to taxonomy in coralline algae.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3