In Vitro Biofilm Formation by Malassezia pachydermatis Isolates and Its Susceptibility to Azole Antifungals

Author:

Čonková Eva,Proškovcová Martina,Váczi Peter,Malinovská Zuzana

Abstract

The yeast Malassezia pachydermatis, an opportunistic pathogen that inhabits the skin of various domestic and wild animals, is capable of producing a biofilm that plays an important role in antifungal resistance. The aim of this research study was to find the intensity of biofilm production by M. pachydermatis strains isolated from the ear canal of healthy dogs, and to determine the susceptibility of planktonic, adhered and biofilm-forming cells to three azole antifungals—itraco-nazole, voriconazole and posaconazole—that are most commonly used to treat Malassezia infections. Out of 52 isolates, 43 M. pachydermatis strains (82.7%) were biofilm producers with varying levels of intensity. For planktonic cells, the minimum inhibitory concentration (MIC) range was 0.125–2 µg/mL for itraconazole, 0.03–1 µg/mL for voriconazole and 0.03–0.25 µg/mL for posaconazole. Only two isolates (4.7%) were resistant to itraconazole, one strain (2.3%) to voriconazole and none to posaconazole. For adhered cells and the mature biofilm, the following MIC ranges were found: 0.25–16 µg/mL and 4–16 µg/mL for itraconazole, 0.125–8 µg/mL and 0.25–26 µg/mL for voriconazole, and 0.03–4 µg/mL and 0.25–16 µg/mL for posaconazole, respectively. The least resistance for adhered cells was observed for posaconazole (55.8%), followed by voriconazole (62.8%) and itraconazole (88.4%). The mature biofilm of M. pachydermatis showed 100% resistance to itraconazole, 95.3% to posaconazole and 83.7% to voriconazole. The results of this study show that higher concentrations of commonly used antifungal agents are needed to control infections caused by biofilm-forming strains of M. pachydermatis.

Funder

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3