Fault Diagnosis in Wind Turbine Current Sensors: Detecting Single and Multiple Faults with the Extended Kalman Filter Bank Approach

Author:

Abbas Mohammed12,Chafouk Houcine1,Ardjoun Sid Ahmed El Mehdi12ORCID

Affiliation:

1. IRSEEM/ESIGELEC Laboratory, Normandy University of Rouen, 76000 Rouen, France

2. IRECOM Laboratory, Djillali Liabes University, Sidi Bel-Abbes 22000, Algeria

Abstract

Currently, in modern wind farms, the doubly fed induction generator (DFIG) is commonly adopted for its ability to operate at variable wind speeds. Generally, this type of wind turbine is controlled by using two converters, one on the rotor side (RSC) and the other one on the grid side (GSC). However, the control of these two converters depends mainly on current sensors measurements. Nevertheless, in the case of sensor failure, control stability may be compromised, leading to serious malfunctions in the wind turbine system. Therefore, in this article, we will present an innovative diagnostic approach to detect, locate, and isolate the single and/or multiple real-phase current sensors in both converters. The suggested approach uses an extended Kalman filter (EKF) bank structured according to a generalized observer scheme (GOS) and relies on a nonlinear model for the RSC and a linear model for the GSC. The EKF estimates the currents in the converters, which are then compared to sensor measurements to generate residuals. These residuals are then processed in the localization, isolation, and decision blocks to precisely identify faulty sensors. The obtained results confirm the effectiveness of this approach to identify faulty sensors in the abc phases. It also demonstrates its ability to overcome the nonlinearity induced by wind fluctuations, as well as resolves the coupling issue between currents in the fault period.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3