A Flexible Metamaterial Based Printed Antenna for Wearable Biomedical Applications

Author:

Al-Adhami Ammar,Ercelebi Ergun

Abstract

This paper presents a microstrip antenna based on metamaterials (MTM). The proposed antenna showed several resonances around the BAN and ISM frequency bands. The antenna showed a suitable gain for short and medium wireless communication systems of about 1 dBi, 1.24 dBi, 1.48 dBi, 2.05 dBi, and 4.11 dBi at 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 GHz, respectively. The antenna was printed using silver nanoparticle ink on a polymer substrate. The antenna size was reduced to 20 × 10 mm2 to suit the different miniaturized wireless biomedical devices. The fabricated prototype was tested experimentally on the human body. The main novelty with this design is its ability to suppress the surface wave from the patch edges, significantly reducing the back radiation toward the human body when used close to it. The antenna was located on the human head to specify the specific absorption rate (SAR). It was found in all cases that the proposed antenna showed low SAR effects on the human body.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3