Abstract
Prolonged sitting and inadequate sleep can impact driving performance. Therefore, objective knowledge of a driver’s recent sitting and sleep history could help reduce safety risks. This study aimed to apply deep learning to raw accelerometry data collected during a simulated driving task to classify recent sitting and sleep history. Participants (n = 84, Mean ± SD age = 23.5 ± 4.8, 49% Female) completed a seven-day laboratory study. Raw accelerometry data were collected from a thigh-worn accelerometer during a 20-min simulated drive (8:10 h and 17:30 h each day). Two convolutional neural networks (CNNs; ResNet-18 and DixonNet) were trained to classify accelerometry data into four classes (sitting or breaking up sitting and 9-h or 5-h sleep). Accuracy was determined using five-fold cross-validation. ResNet-18 produced higher accuracy scores: 88.6 ± 1.3% for activity (compared to 77.2 ± 2.6% from DixonNet) and 88.6 ± 1.1% for sleep history (compared to 75.2 ± 2.6% from DixonNet). Class activation mapping revealed distinct patterns of movement and postural changes between classes. Findings demonstrate the suitability of CNNs in classifying sitting and sleep history using thigh-worn accelerometer data collected during a simulated drive. This approach has implications for the identification of drivers at risk of fatigue-related impairment.
Funder
Australian Research Council
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Researching Effective Systems and Methods for Detecting Drowsiness;2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF);2024-06-03
2. On the move: The impact of breaking up sitting during the day on driving performance when sleep restricted;Transportation Research Part F: Traffic Psychology and Behaviour;2023-07