National-Standards- and Deep-Learning-Oriented Raster and Vector Benchmark Dataset (RVBD) for Land-Use/Land-Cover Mapping in the Yangtze River Basin

Author:

Zhang Pengfei1ORCID,Wu Yijin1,Li Chang1ORCID,Li Renhua2,Yao He2,Zhang Yong2,Zhang Genlin1,Li Dehua1

Affiliation:

1. Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, College of Urban and Environmental Science, Central China Normal University, Wuhan 430079, China

2. Yangtze River Basin Monitoring Center Station for Soil and Water Conservation, Changjiang Water Resources Commission, Wuhan 430010, China

Abstract

A high-quality remote sensing interpretation dataset has become crucial for driving an intelligent model, i.e., deep learning (DL), to produce land-use/land-cover (LULC) products. The existing remote sensing datasets face the following issues: the current studies (1) lack object-oriented fine-grained information; (2) they cannot meet national standards; (3) they lack field surveys for labeling samples; and (4) they cannot serve for geographic engineering application directly. To address these gaps, the national-standards- and DL-oriented raster and vector benchmark dataset (RVBD) is the first to be established to map LULC for conducting soil water erosion assessment (SWEA). RVBD has the following significant innovation and contributions: (1) it is the first second-level object- and DL-oriented dataset with raster and vector data for LULC mapping; (2) its classification system conforms to the national industry standards of the Ministry of Water Resources of the People’s Republic of China; (3) it has high-quality LULC interpretation accuracy assisted by field surveys rather than indoor visual interpretation; and (4) it could be applied to serve for SWEA. Our dataset is constructed as follows: (1) spatio-temporal-spectrum information is utilized to perform automatic vectorization and label LULC attributes conforming to the national standards; and (2) several remarkable DL networks (DenseNet161, HorNet, EfficientNetB7, Vision Transformer, and Swin Transformer) are chosen as the baselines to train our dataset, and five evaluation metrics are chosen to perform quantitative evaluation. Experimental results verify the reliability and effectiveness of RVBD. Each chosen network achieves a minimum overall accuracy of 0.81 and a minimum Kappa of 0.80, and Vision Transformer achieves the best classification performance with overall accuracy of 0.87 and Kappa of 0.86. It indicates that RVBD is a significant benchmark, which could lay a foundation for intelligent interpretation of relevant geographic research about SWEA in the Yangtze River Basin and promote artificial intelligence technology to enrich geographical theories and methods.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3