Retrieving Sub-Canopy Terrain from ICESat-2 Data Based on the RNR-DCM Filtering and Erroneous Ground Photons Correction Approach

Author:

Wu Yang1ORCID,Zhao Rong12,Hu Qing1,Zhang Yujia1,Zhang Kun1

Affiliation:

1. The School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Natural Resources Affairs Center, Changsha 410004, China

Abstract

Currently, the new space-based laser altimetry mission, Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), is widely used to obtain terrain information. Photon cloud filtering is a crucial step toward retrieving sub-canopy terrain. However, an unsuccessful photon cloud filtering performance weakens the retrieval of sub-canopy terrain. In addition, sub-canopy terrain retrieval would not be accurate in densely forested areas due to existing sparse ground photons. This paper proposes a photon cloud filtering method and a ground photon extraction method to accurately retrieve sub-canopy terrain from ICESat-2 data. First, signal photon cloud data were derived from ICESat-2 data using the proposed photon cloud filtering method. Second, ground photons were extracted based on a specific percentile range of elevation. Third, erroneous ground photons were identified and corrected to obtain accurate sub-canopy terrain results, assuming that the terrain in the local area with accurate ground photons was continuous and therefore could be fitted appropriately through a straight line. Then, the signal photon cloud data obtained by the proposed method were compared with the reference signal photon cloud data. The results demonstrate that the overall accuracy of the signal photon identification achieved by the proposed filtering method exceeded 96.1% in the study areas. The sub-canopy terrain retrieved by the proposed sub-canopy terrain retrieval method was compared with the airborne LiDAR terrain measurements. The root-mean-squared error (RMSE) values in the two study areas were 1.28 m and 1.19 m, while the corresponding R2 (coefficient of determination) values were 0.999 and 0.999, respectively. We also identified and corrected erroneous ground photons with an RMSE lower than 2.079 m in densely forested areas. Therefore, the results of this study can be used to improve the accuracy of sub-canopy terrain retrieval, thus pioneering the application of ICESat-2 data, such as the generation of global sub-canopy terrain products.

Funder

National Natural Science Foundation of China

The introduction of talent research start-up fund of Central South University of Forestry and Technology

The Fundamental Research Funds for the Central Universities of Central South University

The Open Topic Foundation of Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake area

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3