Affiliation:
1. Northeast Institute of Geography and Agroecology, CAS, Changchun 130102, China
Abstract
Crop residue burning produces a lot of polluting gases and fine particles, endangering human health, damaging soil structure, and causing fire accidents. In addition to the impact of residue burning on the local environment, pollutants can spread with the wind to more distant areas and impact their air quality. Nevertheless, a comparative analysis of the impact of two common residue burning parameters, the number of residue fire points, and residue burned area on urban air quality indicators has not been reported. In this study, the correlation between these two different residue burning parameters on air quality in Daqing City (Western Heilongjiang Province, China) was investigated comparatively using the Visible Infrared Imaging Radiometer Suite (VIIRS) fire point product, the Moderate-resolution Imaging Spectroradiometer (MODIS) burned area product, and buffer zone analysis. The association between MODIS burned area products and air quality index (AQI) was found to be around 0.8. Meanwhile, it was found that the correlation between the number of residue fire points extracted from the VIIRS active fire products and air quality was above 0.6, again with a maximum of 0.75 at a buffer radius of 50 km. Within other levels of buffer zones, the correlation between residue burned area and AQI was consistently higher than that between residue fire points and AQI. By comparing the correlation between VIIRS fire points, MODIS burned area, and the concentration of each AQI pollutant, it can be found that the correlation between the concentration of each AQI pollutant and the residue burned area was higher than that and the fire points number. MODIS burned area monitoring, on the other hand, detects changes in the time series of images taken by satellite at two transit moments to obtain a new burned area and cumulative burned area during this period, allowing the monitoring of fire traces caused by fire points at non-transit moments. From analyzing the correlation between residue fire points, residue burned area, and the concentration of each pollutant (PM2.5, PM10, CO, NO2, SO2, and O3), we found significant correlations between residue burning and PM2.5, PM10, CO, and NO2 concentrations, with the highest correlation (R2) of 0.81 for PM2.5. Moreover, the correlation between residue burned area and PM2.5, PM10, CO, and NO2 concentrations was significantly higher than that between the number of residue fire points and their concentrations.
Funder
National Key Research and Development Program of China
Science and Technology Project for Black Soil Granary
National Science & Technology Fundamental Resources Investigation Program of China
Subject
General Earth and Planetary Sciences