Fe,Ni-Based Metal–Organic Frameworks Embedded in Nanoporous Nitrogen-Doped Graphene as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction

Author:

Tang Panjuan1,Di Vizio Biagio1ORCID,Yang Jijin1,Patil Bhushan1ORCID,Cattelan Mattia123ORCID,Agnoli Stefano123

Affiliation:

1. Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy

2. National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy

3. Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Research Unit, University of Padova, 35131 Padova, Italy

Abstract

The quest for economically sustainable electrocatalysts to replace critical materials in anodes for the oxygen evolution reaction (OER) is a key goal in electrochemical conversion technologies, and, in this context, metal–organic frameworks (MOFs) offer great promise as alternative electroactive materials. In this study, a series of nanostructured electrocatalysts was successfully synthesized by growing tailored Ni-Fe-based MOFs on nitrogen-doped graphene, creating composite systems named MIL-NG-n. Their growth was tuned using a molecular modulator, revealing a non-trivial trend of the properties as a function of the modulator quantity. The most active material displayed an excellent OER performance characterized by a potential of 1.47 V (vs. RHE) to reach 10 mA cm−2, a low Tafel slope (42 mV dec−1), and a stability exceeding 18 h in 0.1 M KOH. This outstanding performance was attributed to the synergistic effect between the unique MOF architecture and N-doped graphene, enhancing the amount of active sites and the electron transfer. Compared to a simple mixture of MOFs and N-doped graphene or the deposition of Fe and Ni atoms on the N-doped graphene, these hybrid materials demonstrated a clearly superior OER performance.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3