A Deep Learning Model for Data-Driven Discovery of Functional Connectivity

Author:

Mahmood Usman,Fu Zening,Calhoun Vince D.ORCID,Plis SergeyORCID

Abstract

Functional connectivity (FC) studies have demonstrated the overarching value of studying the brain and its disorders through the undirected weighted graph of functional magnetic resonance imaging (fMRI) correlation matrix. However, most of the work with the FC depends on the way the connectivity is computed, and it further depends on the manual post-hoc analysis of the FC matrices. In this work, we propose a deep learning architecture BrainGNN that learns the connectivity structure as part of learning to classify subjects. It simultaneously applies a graphical neural network to this learned graph and learns to select a sparse subset of brain regions important to the prediction task. We demonstrate that the model’s state-of-the-art classification performance on a schizophrenia fMRI dataset and demonstrate how introspection leads to disorder relevant findings. The graphs that are learned by the model exhibit strong class discrimination and the sparse subset of relevant regions are consistent with the schizophrenia literature.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Glacier: Glass-Box Transformer for Interpretable Dynamic Neuroimaging;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

2. Functional connectivity learning via Siamese-based SPD matrix representation of brain imaging data;Neural Networks;2023-06

3. Learning Hierarchical-Order Functional Connectivity Networks for Mild Cognitive Impairment Diagnosis;2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI);2023-04-18

4. Deep Dag Learning of Effective Brain Connectivity for FMRI Analysis;2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI);2023-04-18

5. Mining Fmri Dynamics with Parcellation Prior for Brain Disease Diagnosis;2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI);2023-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3