Semi-Supervised Manifold Alignment Using Parallel Deep Autoencoders

Author:

Aziz Fayeem,Wong Aaron S.W.,Chalup StephanORCID

Abstract

The aim of manifold learning is to extract low-dimensional manifolds from high-dimensional data. Manifold alignment is a variant of manifold learning that uses two or more datasets that are assumed to represent different high-dimensional representations of the same underlying manifold. Manifold alignment can be successful in detecting latent manifolds in cases where one version of the data alone is not sufficient to extract and establish a stable low-dimensional representation. The present study proposes a parallel deep autoencoder neural network architecture for manifold alignment and conducts a series of experiments using a protein-folding benchmark dataset and a suite of new datasets generated by simulating double-pendulum dynamics with underlying manifolds of dimensions 2, 3 and 4. The dimensionality and topological complexity of these latent manifolds are above those occurring in most previous studies. Our experimental results demonstrate that the parallel deep autoencoder performs in most cases better than the tested traditional methods of semi-supervised manifold alignment. We also show that the parallel deep autoencoder can process datasets of different input domains by aligning the manifolds extracted from kinematics parameters with those obtained from corresponding image data.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference47 articles.

1. Introduction to Topological Manifolds;Lee,2000

2. Differential Topology;Hirsch,2000

3. A Comprehensive Introduction to Differential Geometry;Spivac,1979

4. Nonlinear Dimensionality Reduction;Lee,2007

5. A Global Geometric Framework for Nonlinear Dimensionality Reduction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manifold Alignment with Label Information;2023 International Conference on Sampling Theory and Applications (SampTA);2023-07-10

2. A feature extraction and classification algorithm based on improved sparse auto-encoder for round steel surface defects;Mathematical Biosciences and Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3