Modeling Reference Crop Evapotranspiration Using Support Vector Machine (SVM) and Extreme Learning Machine (ELM) in Region IV-A, Philippines

Author:

Tejada Allan T.,Ella Victor B.ORCID,Lampayan Rubenito M.,Reaño Consorcia E.

Abstract

The need for accurate estimates of reference crop evapotranspiration (ETo) is important in irrigation planning and design, irrigation scheduling, reservoir management among other applications. ETo can be accurately determined using the internationally accepted FAO Penman–Monteith (FAO-56 PM) equation. However, this requires numerous observed data, including solar radiation, air temperature, relative humidity, and wind speed, which in most cases are unavailable, particularly in developing countries such as the Philippines. This study developed models based on Support Vector Machines (SVMs) and Extreme Learning Machines (ELMs) for the estimation of daily ETo using different input combinations of meteorological data in Region IV-A, Philippines. The performance of machine learning models was compared with the different established alternative empirical models for ETo. The results show that the SVM and ELM models, with at least Tmax, Tmin, and Rs as inputs, provide the best daily ETo estimates. The accuracy of machine learning models was also found to be superior compared to the empirical models given with same input requirements. In general, SVM and ELM models showed similar modeling performance, although the former showed lower run time than the latter.

Funder

Department of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference62 articles.

1. FAO Irrigation and Drainage Paper No. 56 Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements);Allen,1998

2. Crop evapotranspiration estimation with FAO56: Past and future

3. PAES 217: Determination of Irrigation Water Requirements,2017

4. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications

5. Simple hydrologic model for predicting streamflow in small watersheds for irrigation system planning;Ella;Int. Agric. Eng. J.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3