Variation of Used Vegetable Oils’ Composition upon Treatment with Algerian Clays

Author:

Serouri Abdelhak,Taleb ZoubidaORCID,Mannu AlbertoORCID,Garroni SebastianoORCID,Senes Nina,Taleb SafiaORCID,Brini Sara,Abdoun Sabrine Kawther

Abstract

The treatment of used vegetable oils (UVOs) with clays represents a pivotal step in their industrial recycling process as well as one of the most challenging topics for researchers. In particular, cheap, effective, and sustainable powders need to be explored in order to develop new processes which produce beneficial results in relation to economic and environmental aspects. In this context, five samples within commercial and waste vegetable oils were treated with two sodium- and calcium-based bentonites employing a low oil/bentonite ratio (0.15 wt%). The outcomes of the processes were monitored by FT-IR spectroscopy and compared with the data relative to the parent commercial edible oil. In particular, treatment of FT-IR data by multivariate statistical analysis allowed us to determine a chemical fingerprint characteristic of each sample. Important relationships between the overall chemical composition and the specific clay employed and the treatment time (2 or 4 h) were highlighted. Finally, N2 physisorption, TEM microscopy, and FT-IR analyses of the more efficient Na bentonite allowed us to characterize the material and thus to furnish all the information needed to set-up a general protocol for the partial regeneration of waste vegetable oil destined for further processing.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recycling of used vegetable oils by powder adsorption;Waste Management & Research: The Journal for a Sustainable Circular Economy;2022-11-16

2. Temperature and pH influence on Diuron adsorption by Algerian Mont-Na Clay;International Journal of Environmental Analytical Chemistry;2022-04-06

3. Review on non-thermal plasma technology for biodiesel production: Mechanisms, reactors configuration, hybrid reactors;Energy Conversion and Management;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3