Selective Recovery of Tin from Electronic Waste Materials Completed with Carbothermic Reduction of Tin (IV) Oxide with Sodium Sulfite

Author:

Hyk Wojciech12,Kitka Konrad1

Affiliation:

1. Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland

2. Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, PL-02-089 Warsaw, Poland

Abstract

A new approach for the thermal reduction of tin dioxide (SnO2) in the carbon/sodium sulfite (Na2SO3) system is demonstrated. The process of tin smelting was experimentally optimized by adjusting the smelting temperature and amounts of the chemical components used for the thermal reduction of SnO2. The numbers obtained are consistent with the thermodynamic characteristics of the system and molar fractions of reactants derived from the proposed mechanism of the SnO2 thermal reduction process. They reveal that the maximum yield of tin is obtained if masses of C, Na2SO3 and SnO2 are approximately in the ratio 1:2:3 and the temperature is set to 1050 °C. The key role in the suggested mechanism is the thermal decomposition of Na2SO3. It was deduced from the available experimental data that the produced sulfur dioxide undergoes carbothermic reduction to carbonyl sulfide—an intermediate product involved in the bulk reduction of SnO2. Replacing sodium sulfite with sodium sulfate, sodium sulfide and even elemental sulfur practically terminated the production of metallic tin. The kinetic analysis was focused on the determination of the reaction orders for the two crucial reactants involved in the smelting process.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3