Using Artificial Intelligence for Optimizing Natural Frequency of Recycled Concrete for Mechanical Machine Foundation

Author:

Lashin Maha M. A.,Khokhar Aamir,Alrowais FadwaORCID,Malibari AreejORCID,Saleh Wafaa

Abstract

This paper investigates the mechanical properties of two different types of recycled concrete, which use wood and rubber, relative to those characteristics of pure concrete, in terms of maximum load and natural frequencies. This paper contributes to the state of the art in this area in a number of ways. Firstly, the paper provides furtherance to the progressively growing literature in the field of recycled concrete and mechanical properties of materials. Secondly, the paper investigates the mechanical properties of two different types of recycled concrete by means of investigating the natural frequency of the samples, which is a new contribution. Lastly, the results from predicting the natural frequencies of concrete using fuzzy logic have been effectively assessed and compared with the analytical results. Results from the study show that the pure concrete samples produced maximum natural frequency, then concrete samples with wood, and lastly, concrete samples with rubber. The tolerance between the lab test results and fuzzy logic is approximately 5%. These results could have significant implications for furthering recycled concrete research and for designing machine foundations. Evidence of the applicability of fuzzy logic as a predictive and analysis tool for the mechanical properties of recycled concrete are discussed.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3