Effect of Recycled Concrete Aggregate Addition on the Asphalt Mixtures Performance: ITZ Area, Microstructure, and Chemical Analysis Perspectives

Author:

Al-Bayati Hanaa Khaleel Alwan1ORCID,Jadaa Waleed2ORCID,Tighe Susan L.34

Affiliation:

1. Department of Civil Engineering, College of Engineering, Tikrit University, Tikrit 34001, Iraq

2. Center for Energy and Environmental Sustainability (CEES), Prairie View A&M University, Prairie View, TX 77446, USA

3. Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada

4. Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract

The importance of environmental consciousness and sustainability is increasing among transportation governing bodies worldwide. Many government bodies are concerned with maximizing the usage of recycled substances in road construction. Therefore, assessing the effect of recycled materials consumption is essential, mainly when designing new ‘green’ pavement types. The primary objective of this study is to investigate the impact of different treatments on improving the interfacial transition zone (ITZ) of coarse recycled concrete aggregate (CRCA) and its application in asphalt mixes. Such an aim is accomplished by enhancing its physical and mechanical characteristics, as well as its microstructure. The surface morphology, chemical composition, and intermix phases of the ITZ area and calcium silicate hydrate (CSH) compounds for CRCA were evaluated using scanning electron microscopy (SEM), an energy-dispersive X-ray analyzer (EDAX), and X-ray diffraction analysis (XRD). The performance of asphalt mixtures that included treated and untreated CRCA was also examined using different tests. It was found that heat treatment is an effective technique for enhancing the ITZ. However, cracks were seen in the mortar of CRCA when exposed to high temperatures (500 °C), which adversely affects the characteristics of the mortar. Acid treatment appeared to be an effective approach for improving the ITZ area. Nevertheless, the treatment that used acetic acid, a weak acid, was more effective than HCl acid, a strong acid. The outcomes revealed that the ITZ microstructure is significantly enhanced under different treatment types; however, microstructure improvements mainly included increased surface homogeneity and CSH compounds and a reduced Ca/Si ratio. It was also found that the asphalt mixtures with different proportions of untreated CRCA exhibited enhanced resistance to rutting. Furthermore, their tensile strength ratio (TSR) values were above the minimal level requirements. Moreover, the asphalt mixture with 30% CRCA, which was treated with various treatment methods, demonstrated a significant improvement in the mixtures’ mechanical properties; therefore, its application is highly successful and an environmentally friendly solution.

Funder

Ministry of Higher Education and Scientific Research/Iraq

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3