Assessing Alternative Supporting Organic Materials for the Enhancement of Water Reuse in Subsurface Constructed Wetlands Receiving Acid Mine Drainage

Author:

Oberholzer Martha M.ORCID,Oberholster Paul J.,Ndlela Luyanda L.ORCID,Botha Anna-MariaORCID,Truter Johannes C.

Abstract

Acid mine drainage (AMD) is a global problem with severe consequences for the environment. South Africa’s abandoned mines are a legacy from the country’s economic dependence on the mining sector, with consequent negative impacts on ecosystems. AMD remediation includes active and passive techniques. Constructed wetlands (a passive technique) have lower operational costs but require larger spaces and longer timeframes to achieve the remediation of AMD, and are supported by anaerobic sulphate-reducing bacteria (SRB), which capable of remediating high-sulphate-laden AMD while precipitating dissolved metals from the AMD. Organic substrates supporting these activities are often the limiting factor. When enhancing existing passive AMD remediation technologies, alternative waste material research that may support SRB activity is required to support the circular economy through the reduction in waste products. Chicken feathers show potential as a substrate enhancer, boosting organic carbon availability to SRB, which sustains passive AMD treatment processes by achieving pH elevation, sulphate and metal reductions in AMD water for reuse. Microbial biodiversity is essential to ensure the longevity of passive treatment systems, and chicken feathers are proven to have an association with SRB microbial taxa. However, the longer-term associations between the AMD water parameters, microbial diversity and the selected substrates remain to be further investigated.

Funder

Coaltech Research Association

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3