Study of the Mechanical and Electrochemical Performance of Structural Concrete Incorporating Recycled Polyethylene Terephthalate as a Partial Fine Aggregate Replacement

Author:

Espindola-Flores Ana Cecilia12ORCID,Luna-Jimenez Michelle Alejandra1,Onofre-Bustamante Edgar1,Morales-Cepeda Ana Beatriz2ORCID

Affiliation:

1. Instituto Politécnico Nacional-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira, Km. 14.5 Carretera Tampico-Puerto Industrial Altamira, Altamira 89600, Mexico

2. Centro de Investigación en Petroquímica, Instituto Tecnológico de Ciudad Madero, Tecnológico Nacional de México, Bahía de Aldhair S/N, Altamira 89600, Mexico

Abstract

The extraction of materials, such as sand and gravel, required for the manufacture of concrete results in the overexploitation of natural resources and a large release of CO2 emissions into the environment. Therefore, the search for alternatives to partially replace these aggregates has become an important issue to solve. Nonetheless, the demand for producing sustainable yet high-strength and durable concrete using alternative materials has led concrete technologists to develop high-performance concrete. These novel concretes possess superior engineering properties, such as high durability and ductility, low maintenance costs, high mechanical strength, and prolonged service life. Currently, there is significant interest in the development of concrete–polymer compounds, primarily to improve the mechanical properties of the material. In this context, the present study explores the partial replacement of fine aggregate with recycled Polyethylene terephthalate (R-PET) in different proportions to produce green structural concrete, with the aim of studying its impact on the mechanical and electrochemical properties. The mechanical properties evaluated were the compressive and flexural strengths, while the electrochemical properties were evaluated through the open circuit potential and polarization curves. The results indicated that specimens containing different R-PET percentages as a replacement for fine aggregate showed higher increases in compressive and flexural strengths. It was also found that the presence of R-PET decreased the corrosion rate of the reinforcing steel when seawater was used as the electrolyte.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3