Intelligent and Real-Time Detection and Classification Algorithm for Recycled Materials Using Convolutional Neural Networks

Author:

Ziouzios DimitrisORCID,Baras NikolaosORCID,Balafas VasileiosORCID,Dasygenis MinasORCID,Stimoniaris AdamORCID

Abstract

In recent years, the production of municipal solid waste has constantly been increasing. Recycling is becoming more and more important, as it is the only way that we can have a clean and sustainable environment. Recycling, however, is a process that is not fully automated; large volumes of waste materials need to be processed manually. New and novel techniques have to be implemented in order to manage the increased volume of waste materials at recycling factories. In this paper, we propose a novel methodology that can identify common waste materials as they are being processed on a moving belt in waste collection facilities. An efficient waste material detection and classification system is proposed, which can be used in real integrated solid waste management systems. This system is based on a convolutional neural network and is trained using a custom dataset of images, taken on site from actual moving belts in waste collection facilities. The experimental results indicate that the proposed system can outperform existing algorithms found in the literature in real-world conditions, with 92.43% accuracy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Waste Management and Disposal,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3