Precipitation Characteristics of the Metastable γ″ Phase in a Cu-Ni-Be Alloy

Author:

Zhu Zhiyuan,Cai Yuanfei,Song Kexing,Zhou Yanjun,Zou Jiasheng

Abstract

The precipitation sequence of a Cu-Ni-Be alloy is: α-Cu supersaturated solid solution → Guinier-Preston (G.P.) zones → metastable γ″ → γ′ → stable γ (NiBe) phase. The micro-hardness and electrical conductivity during the aging process were measured. The precipitation characteristics and the distribution of the γ″ phase, under peak aging conditions, were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area diffraction pattern (SADP), and high-resolution transmission electron microscopy (HRTEM). The results show that the orientation relationship of the γ′′ phase/α-Cu matrix is: (001)p//(001)α; [100]p//[110]α (p: Precipitates, α: α-Cu supersaturated solid solution), which is in accordance with the Bain relationship in a FCC/BCC (face centered cubic/body centered cubic) structure, with the unique habit plane being {001}α. While the zone axis is parallel to [001]α, three forms of γ″ phases are distributed on the projection surface at the same time. The (001) reciprocal-lattice positions of γ′′ phase in SADP are diffusely scattered, which is consistent with the variation of the d(001) value of the γ′′ phase. The intra-range variation is related to the distortion of the (001) plane of the γ″ phase, due to interfacial dislocations and distortion strain fields. The lattice of the γ″ phase in the HRTEM images was measured as a = b = 0.259 ± 0.002 nm and c = 0.27–0.32 nm. With the increase of thermal exposure time, the stable γ phase has a NiBe phase structure (Standard Card Number: PDF#03-1098, a = b = c = 0.261 nm), and the long diffuse scattering spots will transform into single bright spots. The edge dislocation, generated by interfacial mismatch, promotes the formation of an optimal structure of the precipitated phase, which is the priority of growth in the direction of [110]p.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3