Reaction Kinetics and Coreflooding Study of High-Temperature Carbonate Reservoir Stimulation Using GLDA in Seawater

Author:

Abdelgawad Khaled Z.ORCID,Mahmoud Mohamed,Elkatatny SalaheldinORCID,Abdulraheem Abdulazeez,Patil Shirish

Abstract

Well stimulation using hydrochloric acid (HCl) is a common practice in carbonate reservoirs to overcome formation damage in the near wellbore area. Using HCl for matrix acidizing has many limitations at high-temperature (HT) conditions, such as tubulars corrosion and face dissolution due to the fast reaction rate. Chelating agents, such as L-glutamic acid-N,N-diacetic acid (GLDA), are alternatives to HCl to overcome these problems. We studied the effect of diluting GLDA in seawater on the reaction kinetics with carbonate rocks under HT conditions at low pH (3.8). Results of the reaction of carbonate at 1000 psi and 150, 200, and 250 °F with GLDA prepared in both fresh and seawater, GLDA/DI and GLDA/SW, respectively, are presented. The reaction kinetics experiments were carried out in HT rotating disk apparatus (RDA) at rotational speeds ranging from 500 to 2000 revolutions per minute (RPM) at a fixed temperature. Indiana limestone and Austin chalk were used to studying the effect of rock facies on the reaction of GLDA with rock samples. In both GLDA/DI and GLDA/SW, the reaction regime of 20 wt% GLDA (3.8 pH) with Indiana limestone was mass transfer limited. The reaction rate and diffusion coefficient were highly dependent on the temperature. For Austin chalk, at 200 °F and 1000 psi the diffusion coefficient of GLDA/SW is an order of magnitude of its value with Indiana limestone using the same fluid. Diffusion coefficients were used to estimate the optimum injection rate for stimulating HT carbonate formation and compared with coreflooding results. The data presented in this paper will support the numerical simulation of the acid flow in carbonate reservoirs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3