A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder

Author:

Wu XiushanORCID,Li Can,Sun Sian,Tong Renyuan,Li Qing

Abstract

A novel induction heating coil is proposed and designed as a shrink-fit tool holder. An electromagnetic field analysis of the coil with different winding methods is conducted using the ANSYS finite element analysis software and an appropriate coil structure is determined, based on the simulated electromagnetic field distribution cloud maps. The magnetic field in the X–Y plane is increased by one order of magnitude around the surface with the addition of the designed magnetic slot, as well as improving the magnetic leakage. The electromagnetic field strength in the middle of the coil is greatly increased, up to 2.312 × 104 A/m, by the addition of a designed magnetic ring covering the top of the coil. The distribution of the three-dimensional temperature field is obtained by the ANSYS workbench transient thermal analysis software, based on the selected coil. Hot-loading equipment used for shrink-fit tool holders are implemented with diameter-selection, power, and heating time-setting functions. Experiments on different types of tool holders are carried out to obtain optimal heating parameters and to verify the reliability of the implemented heating equipment. Through experimental testing, the inserting and pulling out temperature is found to be about 270 °C for the BT40-SF06 and about 285 °C for the BT40-SF10. According to the experimental results, the simulated temperature field is in good agreement with the measured result. The optimal heating parameters of the heating equipment are determined, which proves the correctness of the heating method of the shrink-fit tool holder.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3