Behavior of Chemokine Receptor 6 (CXCR6) in Complex with CXCL16 Soluble form Chemokine by Molecular Dynamic Simulations: General Protein‒Ligand Interaction Model and 3D-QSAR Studies of Synthetic Antagonists

Author:

Aguilera-Durán GiovannyORCID,Romo-Mancillas AntonioORCID

Abstract

The CXCR6‒CXCL16 axis is involved in several pathological processes, and its overexpression has been detected in different types of cancer, such as prostate, breast, ovary, and lung cancer, along with schwannomas, in which it promotes invasion and metastasis. Moreover, this axis is involved in atherosclerosis, type 1 diabetes, primary immune thrombocytopenia, vitiligo, and other autoimmune diseases, in which it is responsible for the infiltration of different immune system cells. The 3D structure of CXCR6 and CXCL16 has not been experimentally resolved; therefore, homology modeling and molecular dynamics simulations could be useful for the study of this signaling axis. In this work, a homology model of CXCR6 and a soluble form of CXCL16 (CXCR6‒CXCL16s) are reported to study the interactions between CXCR6 and CXCL16s through coarse-grained molecular dynamics (CG-MD) simulations. CG-MD simulations showed the two activation steps of CXCR6 through a decrease in the distance between the chemokine and the transmembrane region (TM) of CXCR6 and transmembrane rotational changes and polar interactions between transmembrane segments. The polar interactions between TM3, TM5, and TM6 are fundamental to functional conformation and the meta-active state of CXCR6. The interactions between D77-R280 and T243-TM7 could be related to the functional conformation of CXCR6; alternatively, the interaction between Q195-Q244 and N248 could be related to an inactive state due to the loss of this interaction, and an arginine cage broken in the presence of CXCL16s allows the meta-active state of CXCR6. A general protein‒ligand interaction supports the relevance of TM3‒TM5‒TM6 interactions, presenting three relevant pharmacophoric features: HAc (H-bond acceptor), HDn (H-bond donator), and Hph (hydrophobic), distributed around the space between extracellular loops (ECLs) and TMs. The HDn feature is close to TM3 and TM6; likewise, the HAc and Hph features are close to ECL1 and ECL2 and could block the rotation and interactions between TM3‒TM6 and the interactions of CXCL16s with the ECLs. Tridimensional quantitative structure-activity relationships (3D-QSAR) models show that the positive steric (VdW) and electrostatic fields coincide with the steric and positive electrostatic region of the exo-azabicyclo[3.3.1]nonane scaffold in the best pIC50 ligands. This substructure is close to the E274 residue and therefore relevant to the activity of CXCR6. These data could help with the design of new molecules that inhibit chemokine binding or antagonize the receptor based on the activation mechanism of CXCR6 and provoke a decrease in chemotaxis caused by the CXCR6‒CXCL16 axis.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3