Full-Length Transcriptome Sequencing Provides Insights into Flavonoid Biosynthesis in Fritillaria hupehensis

Author:

Guo Kunyuan,Chen Jie,Niu Yan,Lin Xianming

Abstract

One of the most commonly utilized medicinal plants in China is Fritillaria hupehensis (Hsiao et K.C. Hsia). However, due to a lack of genomic resources, little is known about the biosynthesis of relevant compounds, particularly the flavonoid biosynthesis pathway. A PacBio RS II sequencing generated a total of 342,044 reads from the bulb, leaf, root, and stem, of which 316,438 were full-length (FL) non-redundant reads with an average length of 1365 bp and a N50 of 1888 bp. There were also 38,607 long non-coding RNAs and 7914 simple sequence repeats detected. To improve our understanding of processes implicated in regulating secondary metabolite biosynthesis in F. hupehensis tissues, we evaluated potential metabolic pathways. Overall, this study provides a repertoire of FL transcripts in F. hupehensis for the first time, and it will be a valuable resource for marker-assisted breeding and research into bioactive compounds for medicinal and pharmacological applications.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3