Three-Dimensional Reconstruction of Thermal Volumetric Sources from Surface Temperature Fields Measured by Infrared Thermography

Author:

Groz Marie-Marthe,Abisset-Chavanne Emmanuelle,Meziane Anissa,Sommier Alain,Pradère Christophe

Abstract

Non-destructive testing (NDT) of materials and structures is a very important industrial issue in the fields of transport, aeronautics and space as well as in the medical domain. Active infrared thermography is an NDT method that consists of providing an external excitation to cause an elevation of the temperature field in the material, consequently allowing evaluation of the resulting temperature field at the surface. However, thermal exciters that are used (flash lamps, halogen, lasers) act only on the surface of the sample. On the other hand, several energy conversion systems can lead to the generation of volumetric sources; the phenomena of thermo-acoustics, thermo-induction, thermomechanics or thermochemistry can be cited. For instance, ultrasonic waves can generate volumetric heat sources if the material is viscoelastic or if there is a defect. The reconstruction of these sources is the initial process for the quantification of parameters responsible for the heating. Characterizing a heat source means reconstructing its geometry and the supplied power. Identification of volumetric heat sources from surface temperature fields is a mathematically ill-posed problem. The main cause of the issue is the diffusive nature of the temperature. In this work, 3D reconstruction of the volumetric heat sources from the resulting surface temperature field, measured by infrared thermography, is studied. An analysis of the physical problem enables specifying the limits of the reconstruction. In particular, a criterion on the achievable spatial resolution is defined, and a reconstruction limitation for in-depth sources is highlighted.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3