Abstract
Fetal monitoring is commonly based on the joint recording of the fetal heart rate (FHR) and uterine contraction signals obtained with a cardiotocograph (CTG). Unfortunately, CTG analysis is difficult, and the interpretation problems are mainly associated with the analysis of FHR decelerations. From that perspective, several approaches have been proposed to improve its analysis; however, the results obtained are not satisfactory enough for their implementation in clinical practice. Current clinical research indicates that a correct CTG assessment requires a good understanding of the fetal compensatory mechanisms. In previous works, we have shown that the complete ensemble empirical mode decomposition with adaptive noise, in combination with time-varying autoregressive modeling, may be useful for the analysis of those characteristics. In this work, based on this methodology, we propose to analyze the FHR deceleration episodes separately. The main hypothesis is that the proposed feature extraction strategy applied separately to the complete signal, deceleration episodes, and resting periods (between contractions), improves the CTG classification performance compared with the analysis of only the complete signal. Results reveal that by considering the complete signal, the classification performance achieved 81.7% quality. Then, including information extracted from resting periods, it improved to 83.2%.
Funder
National Commission for Scientific and Technological Research CONICYT
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献