Independent Analysis of Decelerations and Resting Periods through CEEMDAN and Spectral-Based Feature Extraction Improves Cardiotocographic Assessment

Author:

Fuentealba PatricioORCID,Illanes AlfredoORCID,Ortmeier Frank

Abstract

Fetal monitoring is commonly based on the joint recording of the fetal heart rate (FHR) and uterine contraction signals obtained with a cardiotocograph (CTG). Unfortunately, CTG analysis is difficult, and the interpretation problems are mainly associated with the analysis of FHR decelerations. From that perspective, several approaches have been proposed to improve its analysis; however, the results obtained are not satisfactory enough for their implementation in clinical practice. Current clinical research indicates that a correct CTG assessment requires a good understanding of the fetal compensatory mechanisms. In previous works, we have shown that the complete ensemble empirical mode decomposition with adaptive noise, in combination with time-varying autoregressive modeling, may be useful for the analysis of those characteristics. In this work, based on this methodology, we propose to analyze the FHR deceleration episodes separately. The main hypothesis is that the proposed feature extraction strategy applied separately to the complete signal, deceleration episodes, and resting periods (between contractions), improves the CTG classification performance compared with the analysis of only the complete signal. Results reveal that by considering the complete signal, the classification performance achieved 81.7% quality. Then, including information extracted from resting periods, it improved to 83.2%.

Funder

National Commission for Scientific and Technological Research CONICYT

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3