Scattering of Surface Waves by a Three-Dimensional Cavity of Arbitrary Shape: Analytical and Experimental Studies

Author:

Lee JaesunORCID,Ngo VanTrung,Phan Haidang,Nguyen TruongGiang,Dao Duy Kien,Cho Younho

Abstract

The scattering of surface waves by a three-dimensional shallow cavity of arbitrary shape at the surface of a homogenous, isotropic, linearly elastic half-space is theoretically investigated. A novel analytical approach based on a reciprocity consideration is introduced in this article to determine the particle displacements of the scattered wave field generated by the interaction between the surface waves and the cavity. In the usual manner, the scattered field was shown to be equivalent to the radiation from the distribution of tractions, calculated from the incident wave, on the surface of the cavity. The radiation of surface waves subjected to the computed tractions applied at a single location was found using reciprocity theorems. The field scattered by the cavity was subsequently obtained from the superposition of displacements due to all the forces applied on the cavity surface. Solutions for the scattering of surface waves by a spherical, a circular cylindrical (coin-shaped) and a square cylindrical cavity are presented in detail. We here derive the closed-form expressions of the displacement amplitudes, which represent the far-field scattered waves produced by each of the cavities. An experimental setup using the ultrasonic pulse-echo technique was then carried out to record the scattered echoes of surface waves from these cavities in order to provide practical validation of the analytical findings. The vertical displacements measured at a significant distance of about twenty-five wavelengths from the cavities of the same width and different depth were compared with the corresponding theoretical predictions. The comparisons show excellent agreement for the case of a spherical cavity and good agreement in the cases of a circular and a cylindrical cavity in terms of trends and magnitudes. It is followed by a discussion on the results of the comparison and the limitations of the proposed approach regarding the degree of smoothness and the size of cavity.

Funder

National Foundation for Science and Technology Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3