Detection and Imaging of Underground Objects for Distinguishing Explosives by Using a Fluxgate Sensor Array

Author:

Gürkan SerkanORCID,Karapınar MustafaORCID,Doğan SeydiORCID

Abstract

Active and passive techniques are two different techniques with which to detect buried explosives. In practice, the most preferred active method works by broadcasting a signal underground. This signal may stimulate the buried explosive and cause it to explode. It is important to eliminate or minimize this drawback to ensure the safety of the detector operator. In this respect, it is important to increase the studies on the passive detection technique which is not currently used in practice. The aim of this study was to passively detect improvised explosive devices without stimulating them, and to classify underground objects as explosive or non-explosive. A fluxgate sensor array having 33 components was used for passive magnetic field measurements, and the nearest neighborhood algorithm was preferred for classifying the resulting data. In experimental studies, 33 different samples having different amounts of ferromagnetic properties were used. Successful imaging and classification were achieved for the measurements up to 20 cm below the surface of soil. Data were recorded as 32 × 25 matrices, and then they were reduced to 32 × 2 matrices having the same features. Samples having explosive properties were distinguished from other underground objects with success rates of 86% and 95% for 32 × 25 and 32 × 2 data matrices, respectively. Classification times for 32 × 25 and 32 × 2 data matrices were 42 ms and 3.62 ms, respectively. For data groups where the best results were obtained for the data matrices, frame numbers classified in one second were calculated as 23.80 and 276.2, respectively. False alarm rate achieved was 5.31%. The experimental results proved the successes of the matrices reduction and classification approach. One of the most common problems encountered in passive detecting techniques is that the sensor position affects the measurements negatively. In this paper, a solution has been proposed for this important problem.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3