Learning-Based Anomaly Detection and Monitoring for Swarm Drone Flights

Author:

Ahn Hyojung,Choi Han-LimORCID,Kang Minguk,Moon SungTae

Abstract

This paper addresses anomaly detection and monitoring for swarm drone flights. While the current practice of swarm flight typically relies on the operator’s naked eyes to monitor health of the multiple vehicles, this work proposes a machine learning-based framework to enable detection of abnormal behavior of a large number of flying drones on the fly. The method works in two steps: a sequence of two unsupervised learning procedures reduces the dimensionality of the real flight test data and labels them as normal and abnormal cases; then, a deep neural network classifier with one-dimensional convolution layers followed by fully connected multi-layer perceptron extracts the associated features and distinguishes the anomaly from normal conditions. The proposed anomaly detection scheme is validated on the real flight test data, highlighting its capability of online implementation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3