Titanium Nitride Modified Fiber Optic Interferometer for Refractive Index Sensitivity Enhancement

Author:

Yi Duo1,Zhang Bin2ORCID,Geng Youfu1ORCID,Li Xuejin3

Affiliation:

1. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

2. Institute of Translational Medicine, The First Affiliated Hospital (Shenzhen Second People’s Hospital), Shenzhen University, Health Science Center, Shenzhen 518060, China

3. School of Science, Chinese University of Hong Kong, Shenzhen 518172, China

Abstract

As one of the most well-established biocompatible transition metal nitrides, titanium nitride (TiN) has been widely applied for fiber waveguide coupling device applications. This study proposes a TiN-modified fiber optic interferometer. Benefiting from the unique properties of TiN, including ultrathin nanolayer, high refractive index, and broad-spectrum optical absorption, the refractive index (RI) response of the interferometer is greatly enhanced, which is desired all the time in the field of biosensing. The experimental results show that the deposited TiN nanoparticles (NPs) can enhance the evanescent field excitation and modulate the effective RI difference of the interferometer, which eventually results in the RI response enhancement. Besides, after incorporating the TiN with different concentrations, the resonant wavelength and the RI responses of the interferometer are enhanced to varying degrees. Benefitting from this advantage, the sensing performances, including sensitivity and measurement range, can be flexibly adapted based on different detection requirements. Since RI response can effectively reflect the detection ability of biosensors, the proposed TiN-sensitized fiber optic interferometer can be potentially applied for high-sensitive biosensing applications.

Funder

National Natural Science Foundation of China

Stabilization Support Program for Higher Education Institutions of Shenzhen

Shenzhen Basic Research Project

The Basic and Applied Research Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3