Abstract
Wind energy is one of the fastest growing energy sources in the world. It is expected that by the end of 2022 the installed capacity will exceed 250 GW thanks to the supply of large scale wind turbines in Europe. However, there are still challenging problems with wind turbines. In particular, off-shore and large-scale wind turbines are required to tackle the issue of maintainability and availability because they are installed in harsh off-shore environments, which may also prevent engineers from accessing the site for immediate repair works. Fault-tolerant control techniques have been widely exploited to overcome this issue. This paper proposes a novel fault-tolerant control strategy for wind turbines. The proposed strategy has a hierarchical structure, consisting of a pitch controller and a wind turbine controller, with parameter estimations using the adaptive fading Kalman filter technique. The pitch controller compensates any fault with a pitching actuator, while the wind turbine controller computes the optimal reference command for pitching behavior so that the effect of the fault with a pitch actuator can be minimized. The performance of the proposed approach is demonstrated through a set of simulations with a wind turbine benchmark model.
Funder
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献