Numerical Modeling of CO2 Migration in Saline Aquifers of Selected Areas in the Upper Silesian Coal Basin in Poland

Author:

Urych TomaszORCID,Smoliński AdamORCID

Abstract

Determining the characteristics of the dynamic behavior of carbon dioxide in a rock mass is a stage in the process of assessing a potential CO2 storage reservoir. The aim of this study was to analyze the process of CO2 storage in saline aquifers of the selected regions of the Upper Silesian Coal Basin in Poland. The construction of dynamic simulation models was based on static models of real deposit structures developed on a regional scale. Different simulation variants of the CO2 storage process were adopted, varying in terms of injection efficiency and duration of individual simulation phases. The analysis examined the influence of the degree of hydrodynamic openness of the structure on the CO2 storage process, in each of the variants. The results of numerical simulations showed that among the three analyzed geological formations, the Dębowiec formation is the most prospective for potential CO2 storage and is characterized by the most favorable geological and hydrogeological parameters. In the best variant of the simulation, in which the safety of CO2 storage in the rock mass was taken into account, the total amount of CO2 injected in a single directional well was approximately 8.54 million Mg of CO2 during 25 years of injection.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference56 articles.

1. Global Energy and CO2 Status Report–2017,2018

2. Climate Change 2014: Mitigation on Climate Change. Contribution on Working Group III (WG3) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change,2014

3. CCS Deployment in the Context of Regional Developments in Meeting Long-Term Climate Change Objectives,2017

4. Carbon Capture and Storage: Meeting the Challenge of Climate Change,2008

5. Underground CO2 Storage: A Reality?,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3