Mitigating the Impacts of Covert Cyber Attacks in Smart Grids Via Reconstruction of Measurement Data Utilizing Deep Denoising Autoencoders

Author:

Ahmed SaeedORCID,Lee YoungDooORCID,Hyun Seung-HoORCID,Koo InsooORCID

Abstract

As one of the most diversified cyber-physical systems, the smart grid has become more decumbent to cyber vulnerabilities. An intelligently crafted, covert, data-integrity assault can insert biased values into the measurements collected by a sensor network, to elude the bad data detector in the state estimator, resulting in fallacious control decisions. Thus, such an attack can compromise the secure and reliable operations of smart grids, leading to power network disruptions, economic loss, or a combination of both. To this end, in this paper, we propose a novel idea for the reconstruction of sensor-collected measurement data from power networks, by removing the impacts of the covert data-integrity attack. The proposed reconstruction scheme is based on a latterly developed, unsupervised learning algorithm called a denoising autoencoder, which learns about the robust nonlinear representations from the data to root out the bias added into the sensor measurements by a smart attacker. For a robust, multivariate reconstruction of the attacked measurements from multiple sensors, the denoising autoencoder is used. The proposed scheme was evaluated utilizing standard IEEE 14-bus, 39-bus, 57-bus, and 118-bus systems. Simulation results confirm that the proposed scheme can handle labeled and non-labeled historical measurement data and results in a reasonably good reconstruction of the measurements affected by attacks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3