Virtual Assessment and Experimental Validation of Power Loss Contributions in Swash Plate Type Axial Piston Pumps

Author:

Hasko Daniel,Shang Lizhi,Noppe Eric,Lefrançois Emmanuel

Abstract

The understanding of the power loss contributions of each loss source is essential for an effective development of swash plate type axial piston pump. However, it is difficult to obtain the assessment of the power loss distribution due to the lack of methodologies that allow an independent evaluation of each source. This paper addresses this challenge using the most recent simulation methods. It describes the determination of each source, along with the corresponding loss of performance, and the principle of their prediction during the design phase. It also reports the validation of the simulation model by comparing the simulated dynamic displacement chamber pressure and the solid body temperature distribution with measurements obtained from a special pump prototype. This proposed virtual assessment of power loss contributions is demonstrated on a commercial hydraulic unit and the detailed results are reported in this paper.

Funder

European Union

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3