Adaptive Frequency-Based Reference Compensation Current Control Strategy of Shunt Active Power Filter for Unbalanced Nonlinear Loads

Author:

Chen ,Lan ,Chen ,Chen

Abstract

The shunt active power filter (SAPF) is an effective means for the modification of power quality. However, the compensation performance of SAPF would be deteriorated when the unbalanced nonlinear loads are present in the power system. To enhance the compensation performance of SAPF, the adaptive frequency-based reference compensation current control strategy is proposed in this paper. The proposed solution procedure can be divided into three stages including adaptive frequency detection, phase synchronization, and adaptive compensation. With the tracking of power system frequency, the phase synchronization for the SAPF compensation can be effectively modified under the power variation of unbalanced nonlinear loads. Based on the correct synchronization phase angle, the reference compensation current of SAPF can be accurately obtained with the adaptive linear neural network (ALNN) in the stage of adaptive compensation. In addition, the direct current (DC)-link voltage of SAPF can also be effectively regulated to maintain the compensation performance. To verify the effectiveness of the proposed adaptive frequency-based reference compensation current control strategy, the comprehensive case studies implemented with the hardware-in-the-loop (HIL) mechanism are performed to examine the compliance with the specification limits of IEEE Standard 519-2014. The experimental results reveal that the performance of proposed SAPF control strategy is superior to that of the traditional instantaneous reactive power compensation control technique (p-q method) and sliding discrete Fourier transform (DFT).

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3