Innovative Resource Recovery from Industrial Sites: A Critical Review

Author:

Huntington Victoria E.ORCID,Coulon FrédéricORCID,Wagland Stuart T.ORCID

Abstract

Global net-zero pledges are instigating a societal shift from a fossil-fuel-based economy to renewables. This change facilitates the use of batteries, solar photovoltaic (PV), wind turbines, etc., all of which are underpinned by critical metals. Raw metal extraction is not renewable and environmental pledges made by the government will not be met if this continues. Historic industrial sites contain vast waste stocks. These sites already have an established infrastructure for resource extraction. Applying green solvents and deep eutectic solvents (DES) to such sites for resource recovery alleviates pressure on existing raw extraction processes whilst generating more immediate stores of critical metal along with relatively insignificant environmental impacts. Existing remediation/recovery options have varying metal recovery efficiencies usually combined with high operating costs. Using novel green solvents, such as DES, on historic sites provides an opportunity to recover metals from waste that ordinarily would be looked over. Increased extraction of critical metals from waste material within the UK will reduce reliance on imported metals and improve critical metals security of supply to UK markets and the wider economy The use of these solvents provides an environmentally friendly alternative but also regenerates the legacy of waste from historic industrial sites and consequently implements a circular economy. Adopting the use of green solvents will meet EU environmental pledges, and boost the economy, by recovering metals from legacy sites to meet exponentially growing metal demand.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference140 articles.

1. Major metals demand, supply, and environmental impacts to 2100: A critical review;Watari;Resour. Conserv. Recycl.,2021

2. Role of critical metals in the future markets of clean energy technologies;Grandell;Renew. Energy,2016

3. Werner, D., Peuker, U.A., and Mütze, T. (2020). Recycling Chain for Spent Lithium-Ion Batteries. Metals, 10.

4. Moreau, V., Dos Reis, P.C., and Vuille, F. (2019). Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System. Resources, 8.

5. Timperley, J. (2022, March 13). Explainer: These Six Metals Are Key to a Low-Carbon Future. Carbon Brief Website. 2018. Available online: https://www.carbonbrief.org/explainer-these-six-metals-are-key-to-a-low-carbon-future/.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Environmental Geotechnics;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3